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Abstract. The magnetic dipole (M1) and electric quadupole (E2) responses of two-dimensional quantum
dots with an elliptic shape are theoretically investigated as a function of the dot deformation and applied
static magnetic field. Neglecting the electron-electron interaction we obtain analytical results which indicate
the existence of four characteristic modes, with different B-dispersion of their energies and associated
strengths. Interaction effects are numerically studied within the time-dependent local-spin-density and
Hartree approximations, assessing the validity of the non-interacting picture.

PACS. 73. Electronic structure and electrical properties of surfaces, interfaces, thin films,
and low-dimensional structures – 73.20.Mf Collective excitations (including excitons, polarons, plasmons
and other charge-density excitations)

1 Introduction

The electric dipole (E1) response of quantum dots has de-
served much attention in recent years, mainly motivated
by the measurements of far-infrared absorption in these
systems [1,2]. The manifestation of the so called mag-
netoplasmons in a perpendicularly applied magnetic field
constitutes an example of collective oscillation in finite
Fermi systems, physically analogous to those existing in
metal clusters, atoms or nuclei. In parabolically confined
dots magnetoplasmons are understood as rigid motions
of the electronic center of mass, a result that stems from
the generalized Kohn’s theorem [3–7]. However, deviations
from parabolicity, such as angular deformations or non-
quadratic radial behaviour, may result in more compli-
cated absorption patterns which are currently being much
investigated [8–11].

The understanding of other excitation modes of quan-
tum dots are also essential for a proper characterization
of these systems. Techniques based on resonant inelastic
light scattering have already proved extremely useful to
this purpose [12–15]. In fact, using polarization selection
rules they permit to disentangle charge-density from spin-
density and single-particle excitations, as well as to dis-
cern different multipolarity peaks in each channel. The
momentum transfer and magnetic field dependence of the
different excitations of a single sample have been recently
reported using this technique [15]. It is worth to mention
that theoretical analysis of the Raman spectra in circu-
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larly symmetric quantum dots have been presented in ref-
erences [16–18].

In a recent work [19] Austing et al. have reported the
fabrication of vertical quantum dots with assumed ellipti-
cal shapes, and the measurement of their addition energy
spectra. In elliptical quantum dots the existence of orbital-
current modes and their relationship with the quadrupole
(E2) and magnetic dipole (M1) responses were analysed
by us in reference [20]. A characteristic low energy mode,
depending on deformation and with a conspicuous signal
in the M1 channel was found in reference [20], while the
relevance of orbital excitations in the build-up of the elec-
tronic moment of inertia was discussed in reference [21].

In this paper we shall focus on the magnetic field de-
pendence of the orbital and quadrupole modes of ellip-
tical dots, ranging from circular to well elongated ap-
pearances. A strictly two dimensional motion as well as
the effective-mass-Hamiltonian approximation will be as-
sumed to characterize the electronic states. This is con-
sidered to be a reasonable approach to the low energy
states of quantum dots embedded in GaAs [19]. Under-
standing the M1 and E2 responses of deformed dots con-
stitutes a necessary step towards the description of Ra-
man scattering in symmetry unrestricted nanostructures.
It will be shown that four excitation modes with B-
dependent energies and strengths characterize both M1
and E2 responses. This result follows from analytical
calculations in the so-called non-interacting deformed-
harmonic-oscillator (NIDHO) model, as well as for in-
teracting electrons in the local-spin-density (LSDA) and
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Hartree approximations. Therefore, it constitutes a robust
picture against interactions in a somewhat similar way as
Kohn’s modes are.

This paper is organized as follows: Section 2 is de-
voted to the NIDHO model for M1 and E2 responses; in
Section 3 we present the time-dependent LSDA results
for the same channels and compare also with the Hartree
model which neglects exchange and correlation effects; fi-
nally, Section 4 presents the conclusions.

2 The NIDHO model

2.1 The analytic solution of the ground state

We consider a system of non-interacting electrons, con-
fined to the xy plane by an anisotropic parabola [22]

v(conf)(x, y) =
1
2
(
ω2
xx

2 + ω2
yy

2
)
. (1)

This potential, used in reference [19] to analyze the exper-
iments on addition energies of vertical dots, will describe
varying elliptical shapes, depending on the parabolas in
x and y directions. In the following we shall fix the mean
value ω0 = (ωx+ωy)/2 and label the dot deformation with
the parameter δ = ωy/ωx (ranging from 0 to 1). Taking
into account a uniform magnetic field B = Bez, the sys-
tem Hamiltonian reads

H =
N∑
i=1

[
1
2

(pi + γA(ri))
2 + v(conf)(ri)

]
+

1
2
g∗m∗γBSz,

(2)

where γ = e/c (we assume Gaussian magnetic fields) and
within the symmetric gauge A(r) = B/2(−y, x). The last
piece is the Zeeman term, depending on the total spin Sz
and the effective gyromagnetic factor g∗ [23]. Obviously
this is a one-electron picture, in which the relevant one-
electron Hamiltonian is h = hxy + 1

2g
∗m∗γBsz. Because

of the magnetic field, the spatial part hxy deviates from a
simple harmonic oscillator problem. Namely

hxy =
1
2
(
p2
x + p2

y

)
+
ωc
2

(xpy − ypx)

+
1
2
(
ω̃2
xx

2 + ω̃2
yy

2
)
, (3)

with ω̃2
x = ω2

x+ 1
4ω

2
c and ω̃2

y = ω2
y + 1

4ω
2
c the new parabola

coefficients, given in terms of the cyclotron frequency ωc =
eB/c.

The nontrivial problem posed by equation (3) has
been elegantly solved in an analytical way, by Dippel
et al. [24] and Madhav and Chakraborty [25] in the con-
text of atomic physics and quantum dots, respectively. In
the following, we will refer to the derivation by Dippel
et al. They introduce a similarity transformation to a new
Hamiltonian h3 = U−1hxyU , where U = eiαxyeiβpxpy . The

parameters α and β are chosen in order to obtain two de-
coupled oscillators in the x and y directions

h3 =
p2
x

2M1
+

p2
y

2M2
+
M1

2
ω2

1x
2 +

M2

2
ω2

2y
2. (4)

The reader is addressed to reference [24] for the detailed
expressions of α, β, M1, M2, ω1 and ω2 in terms of the
original Hamiltonian parameters.

Most importantly, we can now express the eigenstates
of hxy in terms of those of h3. The latter are simply prod-
ucts of one-dimensional oscillator functions with a given
number of quanta, i.e.,

h3Φn1n2(x, y) = En1n2Φn1n2(x, y)

Φn1n2(x, y) = φn1(x)φn2(y), (5)

while the eigenstates of hxy are given by

hxyΨn1n2(x, y) = En1n2Ψn1n2(x, y),

Ψn1n2(x, y) = U Φn1n2(x, y). (6)

Notice that the energy eigenvalues of hxy coincide with
those of h3 and that they are

En1n2 =
(
n1 +

1
2

)
ω1 +

(
n2 +

1
2

)
ω2. (7)

Having the one-electron states it is then a simple matter to
obtain the N electron ground state of the NIDHO model
just by filling the N lower energy orbitals.

2.2 M1 response

The excitations within the NIDHO model will correspond
to independent particle-hole (ph) transitions in the level
scheme of the ground state. Taking the orbital angular mo-
mentum `z as excitation operator the M1 strength func-
tion will be given by

SM1(ω) =
∑
hp

fh(1− fp)
∣∣〈nh1nh2 |U−1`zU |np1n

p
2〉
∣∣2

×δ(Ep −Eh − ω), (8)

where we have denoted the electron states Φn1n2 as |n1n2〉
and the occupation numbers are given by the f factors.

To evaluate the matrix element in equation (8) we first
need to obtain the transformed operator. This can be ac-
complished by using the Baker-Haussdorf lemma for uni-
tary transformations [26], which introduces a nested con-
mutators expansion. A straightforward calculation yields

U−1`zU=(1− 2αβ)`z+β(1− αβ)(p2
x − p2

y)+α(x2 − y2).
(9)

From equations (8) and (9) it emerges that there are only
four allowed transition energies: ω11 = 2ω1, ω22 = 2ω2,
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Fig. 1. Results within the NIDHO model for a N = 6 electron dot with ω0 = 0.35 H∗. Left panels display the mode energies in
H∗ while central and right ones show the M1 and E2 absorption cross sections ωS(ω) as a function of the magnetic field. Each
row corresponds to a different dot deformation.

ω+ = ω1 +ω2 and ω− = |ω1−ω2| whose M1 strengths are

SM1(ω11) =
(α− β(1− αβ)M2

1ω
2
1)2

4M2
1ω

2
1

×
∑

occ. levels

(1− fn1+2n2)(n1 + 1)(n1 + 2)

SM1(ω22) =
(α− β(1− αβ)M2

2ω
2
2)2

4M2
2ω

2
2

×
∑

occ. levels

(1− fn1 n2+2)(n2 + 1)(n2 + 2)

SM1(ω+) =
(1− 2αβ)2

4M1M2ω1ω2
(M2ω2 −M1ω1)2

×
∑

occ. levels

(1− fn1+1n2+1)(n1 + 1)(n2 + 1)

SM1(ω−) =
(1− 2αβ)2

4M1M2ω1ω2
(M2ω2 +M1ω1)2

×
∑

occ. levels

(1− fn1+1n2−1)(n1 + 1)n2. (10)

Result (10) provides a clear interpretation of the dif-
ferent modes: ω11 corresponds to the absorption of two
x-oscillator quanta, ω22 absorbs two y quanta while ω+

takes one quantum in each oscillator. By contrast, ω− is
associated with the absorption of one x quantum accom-
panied by the emission of a y quantum. We remind the

reader that our convention (ωy ≤ ωx) renders the absorp-
tion of a y quantum accompanied by the emission of an
x quantum energetically forbidden.

Figure 1 depicts the absorption energies and associated
intensities ωS(ω) as a function of the magnetic field for
different deformations in a quantum dot with N = 6 elec-
trons and ω0 = 0.35 H∗. For δ ≥ 0.7, when the system is
just slightly deformed (δ = 1 corresponds to the circular
case), only the ω+ mode is active at low B’s. As the mag-
netic field is increased, very rapidly the ω11 and ω22 modes
gain strength and disperse in energy. Eventually, for very
large magnetic fields ω22 becomes the lowest energy mode
and carries most of the strength.

The ω− mode deserves a special discussion. Deformed
dots at low deformation and magnetic field are charac-
terized by the same oscillator occupancy numbers of the
corresponding circular limit. In the case of magic number
dots (N = N (N + 1) with N an integer number specify-
ing the last occupied shell) the ∆n1 = 1, ∆n2 = −1 ph
transitions are Pauli-blocked thus completely inhibiting
the ω− mode. This excitation is switched on (with a sud-
den increase in strength) only when the deformation or B
are high enough to break the closed shell structure, which
takes place in first instance when

ω2

ω1
=

N
N + 1

· (11)
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Fig. 2. The lines show the boundary between regions for
ω− mode in the NIDHO model and different dot sizes. Left
and right of each curve correspond to ω− being active or non-
active (Pauli blocked) respectively. As in Figure 1 we have fixed
ω0(N = 6) and used the jellium-disk relation ω0(N1)/ω0(N2) =
(N2/N1)1/4 for increasing sizes.

Figure 2 displays the regions in the (δ,B) plane in which
the ω− mode is active, for different dot sizes. This effect
is absent for non-magic electron numbers since there is no
Pauli blocking for these systems and, as a consequence, ω−
is active at all δ and B. For N = 12, 20, . . . , subsequent
changes in the ground state level structure give also rise to
enhancements of the ω− strength by allowing an increasing
number of ph transitions. The mechanism discussed here
is also responsible for strong enhancements of the moment
of inertia in these systems [21].

The general situation in Figure 1 is qualitatively very
similar for the deformations δ = 0.9 and 0.7, we remark
however that for δ = 0.7 the splitting ω11 − ω22 is higher
at low B and the ω− mode switches on at a smaller mag-
netic field. For large deformations (δ = 0.4) the ω− mode
is active even at B = 0. Notice also that the splitting
ω11 − ω22 is so high that ω22 approaches ω− at vanishing
magnetic fields. A common feature to all deformations is
that ω22 dominates the response at high B’s. Altogether,
the NIDHO model provides a quite interesting scenario of
the M1 channel, with the emergence of novel modes and
big strength transfers between them as a function of the
magnetic field and deformation.

2.3 E2 response

The E2 strength is given in terms of the quadrupole op-
erator xy by

SE2(ω) =
∑
hp

fh(1− fp)
∣∣〈nh1nh2 |U−1xyU |np1n

p
2〉
∣∣2

×δ(Ep −Eh − ω). (12)

In a way similar to the M1 analysis we may obtain the
E2 matrix elements. After a straightforward calculation
one finds the same four modes of the M1 channel mani-
festing in the E2 spectra, although with different strengths

(see third column in Fig. 1). The detailed expressions are

SE2(ω11) =
β2

4

∑
occ. levels

(1− fn1+2n2)(n1 + 1)(n1 + 2)

SE2(ω22) =
β2

4

∑
occ. levels

(1− fn1 n2+2)(n2 + 1)(n2 + 2)

SE2(ω+) =
(1− β2M1M2ω1ω2)2

M1M2ω1ω2

×
∑

occ. levels

(1− fn1+1n2+1)(n1 + 1)(n2 + 1)

SE2(ω−) =
(1 + β2M1M2ω1ω2)2

M1M2ω1ω2

×
∑

occ. levels

(1− fn1+1n2−1)(n1 + 1)n2. (13)

We notice that the share of strength as a function of
the magnetic field and deformation is similar to the mag-
netic dipole case. Several differences may, however, be re-
marked. Firstly, the ω+ mode is relatively enhanced for all
δ and B as compared to the results for the M1 channel. For
instance the intensity ratio IE2(ω+)/IE2(ω−) is enhanced
by a factor ≈ 4 at δ = 0.4 and B = 0. It is also worth
to point out that the ω11 and ω22 intensities are reverted
with respect to the M1 result. Finally, at large magnetic
fields the low energy ω22 mode is no longer the dominant
one since both ω11 and ω− show a higher intensity.

As remarked above the number of electrons in Figure 1
(N = 6) corresponds at low deformations δ → 1 to a
closed shell quantum dot. When analysing the M1 and
E2 responses of dots that correspond to open shells in
the circular limit the results are quite similar to those in
this Figure, but with the important difference that the
ω− mode is already active at B = 0 since Pauli blocking
is not effective in this case.

3 Role of the interaction

3.1 The method

To analyze the role of electron-electron interactions in
a microscopic formalism we resort to the LSDA ver-
sion of density functional theory. Besides the electron-
electron repulsion contained in the selfconsistent electro-
static potential, the LSDA includes electronic exchange
and correlation effects by relying on exact calculations
for the uniform electron gas. At different levels, density
functional theory has been applied by many authors to
describe the ground state [27–31] and excitations of quan-
tum dots [7–9,32]. The most refined version is the so-
called current-density functional, first applied to quantum
dots by Ferconi and Vignale [27], that was recently used
to describe the edge reconstruction in these systems for
large magnetic fields [33]. Nevertheless, current terms are
known to be rather small for moderate magnetic fields
and will be neglected in this work in which we shall re-
sort to the approach of reference [8], developed for the
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Fig. 3. M1 an E2 absorption intensities within LSDA for different magnetic fields and deformations. The results correspond to
the same dot of Figure 1.

treatment of noncircular nanostructures. The importance
of exchange and correlation on the M1 and E2 response
functions will be quantified by comparing the LSDA with
the results of the Hartree model, which totally neglects
exchange and correlation.

The description of excitations in deformed nanostruc-
tures constitutes a highly nontrivial task, mainly because
of the lack of symmetry not allowing the analytic integra-
tion of angular variables as in circular systems. For this
reason we shall use the time-dependent LSDA to obtain
the time evolution, following an initial perturbation, of
relevant expectation values. The set of single-particle or-
bitals {ϕi(r)} evolves in time as

i
∂

∂t
ϕiη(r, t) = hη[ρ,m]ϕiη(r, t) , (14)

where η =↑, ↓ is the spin index, and total density and
magnetization are given in terms of the spin densities
ρη(r) =

∑
i |ϕiη(r)|2, by ρ = ρ↑+ ρ↓ and m = ρ↑− ρ↓, re-

spectively. The Hamiltonian hη in equation (14) contains,
besides of kinetic energy, the confining v(conf)(r) potential
and the selfconsistent Hartree

v(H)(r) =
∫

dr′
ρ(r′)
|r− r′| (15)

and exchange-correlation

v(xc)
η (r) =

∂

∂ρη
Exc(ρ,m) (16)

contributions. In the Hartree model we neglect v
(xc)
η .

The exchange-correlation energy density Exc has been de-
scribed as in references [7–9,32].

An initial perturbation of the orbitals ϕ′(r) = Pϕ(r)
models the interaction with the external field. The unitary
operator P is given in terms of a displacement field u(r) as

P = exp [iu(r) · p]. (17)

The appropriate fields for the M1 and E2 channels are
uM1 = λ r eθ and uE2 = λ∇(xy), where λ is a small
parameter that guarantees the linear regime. Actually,
these operators correspond to a rigid rotation (M1) and a
quadrupole distortion (E2) of the electronic orbitals. Af-
ter the initial distortion we keep track of 〈

∑
i `

(i)
z 〉(t) or

〈
∑
i xiyi〉(t) and a subsequent frequency analysis of the

signal provides the absorption energies and their associ-
ated strengths [8,20].

3.2 LSDA results and discussion

Figure 3 summarizes the M1 and E2 spectra of the N =
6 electron dot within time-dependent LSDA. Quite re-
markably many features of the NIDHO model are also
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present in the LSDA spectra. In fact we can identify
the four modes, labeled in Figure 3 by analogy with the
NIDHO results, although in general they lie at different
energies because of the interactions.

Focusing on the M1 channel, we notice for δ = 0.9
the emergence of the low energy mode ω− and its crossing
with the ω22 mode. This crossing takes place at B ≈ 1.5 T
for both δ = 0.9 and δ = 0.7 and at B ≈ 1 T for δ = 0.4.
The dominance of ω22 at large B’s is also in very good
agreement with the NIDHO prediction. We also remark
that for δ = 0.7 the ω− mode is switched on even at
B = 0 as a result of the interactions. At δ = 0.4 the
closeness of ω22 and ω− at low magnetic fields predicted in
the non-interacting case is nicely seen in Figure 3. It is also
worth to mention the strong quenching of the ω11 mode
within LSDA.

The E2 results also reflect to a great extent the sys-
tematics predicted by the NIDHO model. In general the
high energy modes ω+ and ω11 are more important in
the E2 spectra than in the M1 ones, especially at large
magnetic fields. In some cases the LSDA strengths show
some small fragmentations that we attribute to ph effects
(Landau damping). For instance, this is quite clear in the
ω11 mode at 3 and 4 teslas.

3.3 Hartree results

The basic trends discussed in the preceding subsection are
not significantly modified if the exchange and correlation
contributions to equation (14) are neglected, i.e., if one re-
sorts to the Hartree model. Figure 4 shows the correspond-
ing M1 and E2 absorption intensities for a deformation of
δ = 0.7. The results look very similar to the intermediate
panels of Figure 3 thus indicating that the exchange and
correlation do not play a relevant role in the formation of
these collective modes. Nevertheless, some differences can
be noted, as the higher relative strength of the ω−(M1)
for B < 2 T in LSDA and the different fragmentation of
the high energy mode ω11(E2) in the LSDA and Hartree
models.

4 Summary and conclusions

The M1 and E2 channels of elliptic quantum dots are char-
acterized by four modes whose energies and strengths vary
with magnetic field and deformation. Their main charac-
teristics are already seen in a non-interacting model, al-
though interactions shift the mode energies and introduce
several minor differences. The comparison of LSDA and
Hartree results indicates that exchange and correlation ef-
fects are not very important in the characterization of the
M1 and E2 responses. The main trends seen in Figures 1–4
may be summarized as follows:

a) Three modes ω11, ω+ and ω− have a positive dispersion
relation with B while the other ω22 exhibits a negative
one. At low magnetic fields and deformations ω11, ω+

and ω22 are very close, while ω− lies at a much lower
energy. As the deformation is increased the three upper
modes separate in energy (at B ≈ 0), the lower of them
ω22 coming close to ω−.

b) At low B’s the M1 strength of closed shell dots is ex-
hausted by ω+ while, when increasing the deformation
ω− becomes also active. This mode is also switched on
when increasing the magnetic field for a fixed deforma-
tion as a consequence of the Pauli blocking mechanism.
Generally, a crossing between ω− and ω22 occurs for in-
termediate magnetic fields. At large magnetic fields the
low energy ω22 mode eventually takes all the strength.

c) The E2 spectra are similar to the M1 ones, although an
important amount of strength shifts to the high energy
modes ω+, ω− and ω11 as compared to the magnetic
dipole channel. Contrary to the M1 case the E2 absorp-
tion does not show a clear dominant peak at high B’s.

This work was supported by Grant No. PB98-0124 from DGE-
SeIC, Spain.
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